
DevOps Done Wrong
A study of seemingly obvious common corporate failure modes

Johannes J. Meixner

Aarau, November 2022

In the following article I expose some seemingly obvious and yet very com-
mon failure modes of applying DevOps principles to your organization. I look
at using Big Data frameworks, the dangers of Environment Multiplication,
Missing Code Reviews, the everlasting practice of Continuing Silos, playing
Hybrid Games, the joys of Agile Waterfalls and ultimately conclude with the
horrors of Fragile Processes.

Contents

Big Data Frameworks 2

Environment Multiplication 2

Missing Code Reviews 3

Continuing Silos 4

Hybrid Games 4

Scrummy Waterfalls 5

Fragile Processes 6

1



Big Data Frameworks

One of the most curious results I’ve noticed in the last two years:

Frameworks that exist to supposedly make big amounts of data handling “easier” on
average fail horribly, all in the same ways.

When used outside of narrowly-defined means of the user interface (point & click), they
obscure so many relevant details you will spend 3/4th of your time trying to navigate
their ill-documented APIs - when all they allow you to do is changing a file on a file
system, which can be done by a junior sysadmin in an instant.

This is, of course, fine and dandy if you are working in a body-leasing sweatshop and get
billed out to clients by the hour (or day) receiving a fixed salary, because obviously you
will want to learn myriad new ways of changing files in the cloud, all on a customer’s dime,
so you can list experience with the latest and greatest frameworks among customer’s
testimonials and in your resume.

Whereas, if you were self-employed, billing by terabytes processed per hour, you’d want
to go the “extra mile”, and eliminate extant fragility, one source at a time, until there’s
almost nothing left.

You would probably set up a highly repeatable cluster installation using very dumb tools
(Perl 5.x, Bourne Shell, maybe Python) on bare metal, and focus on the underlying
software; never the framework to manage it.

Incentives matter.

Environment Multiplication

Systems development has been cursed recently with the blessings of “DevOps”, making it
somewhat cheaper to spin up very large amounts of very similarly configured servers.

When software developers noticed this, one of the first things they did was to convince
management they need more environments to satisfy different audiences (other develop-
ers - QA & testing - integration - paying clients).

Project management happily agreed, thinking this would introduce some level of risk
management: As the myth goes, what has successfully deployed to both Test and Inte-
gration environments will not cause production outages.

This is probably a sensible measure if you have a piece of software generating large
amounts of dollars: legacy applications running on mainframes.

Yet with the advent of virtual machines, every niche group within a firm now wants
their own environment: There are data integration engineers, electronic data interchange
specialists, pre-sales engineers and managers that need to present to their bosses bosses,

2



and they couldn’t possibly use the same environment - because one would be fragile to
changes made by another.

So to decouple this, some previous projects I had worked on have spun up a dozen (!!!)
different PERMANENT environments, not even counting temporary containers spun up
for test suites.

Which, as you can probably guess, created a lot of make-work in environment main-
tenance. To satisfy some niche group’s vanity, at the expense of the system’s overall
stability.

Incentives matter.

Missing Code Reviews

In most industries where lives are on the line, not using process checklists and multiple
reviewers is considered unthinkable. In those, reviewers are often actively encouraged to
criticize people of much senior status when they fail to perform basic duties.

Meanwhile, in corporate IT: Most firms use file hosting systems with built in code
review functionality. Thankfully, changes often require at least another pair of eyes to
approve them. And yet, these are more often than not a formality. Approval is given
without actively engaging with the difference in functionality before and after, often
within seconds of opening the code review’s URL.

Some of this might be understandable. A junior developer new to a codebase might not
think they are in any way qualified to actually approve anything. A senior developer
may have a reputation for good work. Other human factors might come into play.

And all of it at one point or another will generate excess cost. Sooner or later, some not
well thought out code will go into production, and cause outages[1].

Something that might prevent these is to encourage everyone, no matter how experienced,
to participate actively in code reviews. This means, at a minimum, asking questions:

• Often enough, code that produces negative side-effects has a certain “funky look”
to it. If something seems unclear, unnecessary, out of line, or in some way dubious,
this is an easy way in to leaving a comment along the lines of “What’s this do?”

• “Clever hacks” - that is, anything that takes longer than expected to understand
- should have comments documenting intended behavior. If they are missing, here
is another way in.

• Last but not least, when you see someone using a pattern you are not yet familiar
with, you could ask where (which language, perhaps) this comes from.

3



This document will give you some ideas. But first and foremost, it gives you the license
to question. At the price of a duty to perform code review.

[1] The author of these lines has produced these effects often enough, “for research
purposes.”

Continuing Silos

Under traditional methodologies, waterfall and the likes, companies have compartmen-
talized software development and platform operations into two dedicated organizational
units, often with entirely different management lines imposed from the top.

This model can be continued by adding a third component into the mix - hiring dedicated
“DevOps staff” to sit in-between between developers and operators.

Companies need to satisfy stakeholder demands for state of the art in-house knowledge
on deployment software of the day, be it “configuration management” or “infrastructure
as code” software.

Popular with this model is to keep actual infrastructure changes within operations. De-
velopment teams “provide the software”. DevOps teams “provide the infra glue”. Oper-
ations “provide deployments”. Neatly separated.

What obtains is that people writing the software are twice-removed from its effects,
and that those who write the “infra glue” do not have their skin in the game during
deployments either.

Combine that with on-call duties separated into yet another team (!) and you can
virtually guarantee hilarity ensuing left right and center.

Software developers work very differently when their sleep is put at risk. DevOps staff
will be much more diligent in ensuring everything is well tested and stable before it
touches integration environments.

What seems to work much less badly: forming mixed teams, involving all three groups
mentioned above, rotating on-call duties - and checklists.

Hybrid Games

With the advent of Cloud computing, established companies face changing business
models. They are scrambling to transform their IT departments running on “legacy
systems” from cost centers to more customer-focused operations.

4



Likewise, cloud-first startups grow into sizes where purely relying on AWS (OpEx),
versus building up their own data center (through CapEx) is not as cost-effective at
scale as previously thought.

At both ends of the spectrum, successful transformation is required to maintain margins.
This can be done in a myriad ways, many of which yield only partial implementation
and as such will lean towards half-bakedness.

To follow the first case: A common approach is to dive headfirst into new Cloud platforms,
leveraging quick-to-scale services into a very complex architecture while bringing “on
premise” mindsets (long-running, mutable infrastructure that requires patchdays).

A more cautious approach uses “On-Premise Cloud” services, provided by big players like
VMware, Oracle, SAP, and the various OpenStack backers. It involves virtual machines
operated through “self service portals”. The caveat nobody talks about is that these are
typically operated by a very limited class of people, so are never actually self-service in
practice.

Mindsets consist of intellectual habits - ways of thinking about things - which take some
time to obtain, and are achieved only by deliberate practice. What we do most often
shapes how we think about things (“when all you have is a hammer”). Hence new
paradigms require new mindsets; whether you move from in-house architecture to the
Cloud, or migrate in the reverse direction.

It is absurd to assume that an application written for AIX will be easily ported to
Amazon Linux and will work flawless in auto-scaling groups without a complete rewrite.
Likewise, it is absurd to assume that change management processes can be ported to
the Cloud without redesign.

Similarly, it is absurd to assume that immutable infrastructure works just as well via
KVM over IP. Reimaging a server the cost of a middle-class car still requires more than
ten seconds, and consequently, slighthly more careful operations.

Growing “on-prem” or “cloud-only” operations into “hybrid operations” can be done
if supplied with helpful management that fully supports the bimodality in operations
models.

Everything else will end in tears.

Scrummy Waterfalls

One important challenge in modern enterprise is reconciling the volatility and uncer-
tainty around agile processes with stakeholders expecting waterfall-style outcomes, their
inherent predictability and sense of covering your ass.

5



SCRUM brings its daily standups, weekly meetings, plannings, reviews, refinement and
retrospective meetings. It is a complete suite for achieving product development through
verifiable and (sort of) plannable increments.

Now we learn that this can be reconciled, merged and layered with standard waterfall
project management mechanisms, especially those that have been used for decades in
large companies and state-sponsored enterprises.

This, of course, yields the worst of both worlds: you are neither agile, nor will you
ever be able to “throw planned results over the wall to operations”. All the paper trails
you leave to satisfy dinosaur processes, such as writing project specifications to obtain
internal funding, cost valuable resources you cannot spend building the thing you are
supposed to be shipping.

To escape that trap, challenge the notion of Hybrid approaches. It will work better if
you pick one or the other.

Fragile Processes

As a business (as opposed to a Company of One, like yours truly) your strategic ad-
vantage comes from codifying repeated workflows into proper processes. This leads to
desirable side effects, one of them being the saved time, money and effort in doing things
the Proper Way you’ve always done it.

What I’ve noticed is that many companies go to great lengths to codify complex interac-
tions, but . . . end up either overthinking things, making the process more complicated
than necessary; or the very opposite: forgetting to codify things, and then forgetting to
execute.

Two examples that I’ve noticed in recent years:

• It’s probably a good idea to immediately revoke access and offboard a contractor
whose invoice you have no desire to pay. American firms are very good at this.
Privately held European corporations, especially the larger firms, also. Some star-
tups as well, when the founders have at least one security-person on the board.
Otherwise, it’s like watching a slow-moving train wreck: Imagine being subjected
to an external audit, the auditor seeing an unpaid invoice, and write access (or
worse) to the core parts of the infrastructure. ;-)

• It’s probably a good idea not to overthink new processes for corporate open-source
platforms you’ve never used. This is something that you’ll work out in time, typi-
cally within the first two years after setting up new infrastructure. People change,
platforms do in subtle ways, and you’d want to make sure your documentation
remains easily adaptable. Preferably on the leaner side.

6



With some creativity, these two very opposite cases are easily solvable. There might be a
middle ground between the two extremes - pure laissez-faire, and pure top-down design
- and you might be able to find it in due course.

7


	Big Data Frameworks
	Environment Multiplication
	Missing Code Reviews
	Continuing Silos
	Hybrid Games
	Scrummy Waterfalls
	Fragile Processes

